Pure Mathematics 3

Exercise 8A

1 a $\mathrm{f}(x)=x^{3}-x+5$
$\mathrm{f}(-2)=-8+2+5=-1<0$
$\mathrm{f}(-1)=-1+1+5=5>0$
There is a change of sign between -2 and -1 so there is at least one root in the interval $-2<x<-1$.
b $\mathrm{f}(x)=x^{2}-\sqrt{x}-10$
$\mathrm{f}(3)=9-\sqrt{3}-10=-2.732 \ldots<0$
$\mathrm{f}(4)=16-\sqrt{4}-10=4>0$
There is a change of sign between 3 and 4 so there is at least one root in the interval $3<x<4$.
c $\mathrm{f}(x)=x^{3}-\frac{1}{x}-2$
$\mathrm{f}(-0.5)=(-0.5)^{3}+2-2=-0.125<0$
$\mathrm{f}(-0.2)=(-0.2)^{3}+5-2=2.992>0$
There is a change of sign between -0.5 and -0.2 so there is at least one root in the interval $-0.5<x<-0.2$.
d $\mathrm{f}(x)=\mathrm{e}^{x}-\ln x-5$
$\mathrm{f}(1.65)=\mathrm{e}^{1.65}-\ln 1.65-5=-0.293 \ldots<0$
$\mathrm{f}(1.75)=\mathrm{e}^{1.75}-\ln 1.75-5=0.194 \ldots>0$
There is a change of sign between 1.65 and 1.75 so there is at least one root in the interval $1.65<x<1.75$.

2 a $\mathrm{f}(x)=3+x^{2}-x^{3}$
$\mathrm{f}(1.8)=3+1.8^{2}-1.8^{3}=0.408>0$
$\mathrm{f}(1.9)=3+1.9^{2}-1.9^{3}=-0.249<0$
There is a change of sign so there is a root, α, in the interval [1.8, 1.9].
b Choose interval $[1.8635,1.8645]$ to test for root.

$$
\begin{aligned}
\mathrm{f}(1.8635) & =3+1.8635^{2}-1.8635^{3} \\
& =0.00138 \ldots>0 \\
\mathrm{f}(1.8645) & =3+1.8645^{2}-1.8645^{3} \\
& =-0.00531 \ldots<0
\end{aligned}
$$

There is a change of sign between 1.8635 and 1.8645 , so $1.8635<\alpha<1.8645$, which gives $\alpha=1.864$ correct to 3 d.p.

3 a $\mathrm{h}(x)=\sqrt[3]{x}-\cos x-1$
$h(1.4)=\sqrt[3]{1.4}-\cos 1.4-1=-0.0512 \ldots<0$
$h(1.5)=\sqrt[3]{1.5}-\cos 1.5-1=0.0739 \ldots>0$
There is a change of sign so there is a root, α, in the interval [1.4, 1.5].
b Choose interval [1.4405, 1.4415] to test for root.

$$
\begin{aligned}
\mathrm{h}(1.4405) & =\sqrt[3]{1.4405}-\cos 1.4405-1 \\
& =-0.00055 \ldots<0 \\
\mathrm{~h}(1.4415) & =\sqrt[3]{1.4415}-\cos 1.4415-1 \\
& =0.00069 \ldots>0
\end{aligned}
$$

There is a change of sign between 1.4405 and 1.4415 , so $1.4405<\alpha<1.4415$, which gives $\alpha=1.441$ correct to 3 d.p.

4 a $\mathrm{f}(x)=\sin x-\ln x$
$\mathrm{f}(2.2)=\sin 2.2-\ln 2.2=0.020 \ldots>0$
$\mathrm{f}(2.3)=\sin 2.3-\ln 2.3=-0.087 \ldots<0$
There is a change of sign so there is a root, α, in the interval [2.2, 2.3].
b Choose interval [2.2185, 2.2195] to test for root.

$$
\begin{aligned}
\mathrm{f}(2.2185) & =\sin 2.2185-\ln 2.2185 \\
& =0.00064 \ldots>0 \\
\mathrm{f}(2.2195) & =\sin 2.2195-\ln 2.2195 \\
& =-0.00041 \ldots<0
\end{aligned}
$$

There is a change of sign between 2.2185 and 2.2195, so $2.2185<\alpha<2.2195$, which gives $\alpha=2.219$ correct to 3 d.p.

5 a $\mathrm{f}(x)=2+\tan x$
$\mathrm{f}(1.5)=2+\tan 1.5=16.1 \ldots>0$
$f(1.6)=2+\tan 1.6=-32.2 \ldots<0$
So there is a change of sign in the interval [1.5, 1.6].

5 b A sketch shows there is a vertical asymptote in the graph of $y=\mathrm{f}(x)$ at $x=\frac{\pi}{2}=1.57 \ldots$ So there is no root in the interval [1.5, 1.6].

6 A sketch shows a root at -0.5 .

Or $\mathrm{f}(x)=0$ when $\frac{1}{x}+2=0 \Rightarrow x=-\frac{1}{2}$
which is in the interval $[-1,1]$.
7 a $\mathrm{f}(x)=\left(105 x^{3}-128 x^{2}+49 x-6\right) \cos 2 x$ $\mathrm{f}(0.2)=(0.84-5.12+9.8-6) \cos 0.4$
$=-0.442 \ldots<0$
$\mathrm{f}(0.8)=(53.76-81.92+39.2-6) \cos 1.6$
$=-0.147 \ldots<0$
b There is no sign change, so there are either no roots or an even number of roots in the interval $[0.2,0.8]$.
c $\mathrm{f}(0.3)=(2.835-11.52+14.7-6) \cos 0.6$

$$
=0.0123 . .>0
$$

and...

$$
\begin{aligned}
& \mathrm{f}(0.4)=-0.111 \ldots<0 \\
& \mathrm{f}(0.5)=-0.202 \ldots<0 \\
& \mathrm{f}(0.6)=0 \\
& \mathrm{f}(0.7)=0.271 \ldots>0
\end{aligned}
$$

d From the changes in sign, there exists at least one root in each of the intervals $0.2<x<0.3,0.3<x<0.4$ and $0.7<x<0.8$. There is also a root at 0.6 . Therefore there are at least four roots in the interval $[0.2,0.8]$.

8 a

b The curves meet where $\mathrm{e}^{-x}=x^{2}$.
The curves meet at one point, so there is one value of x that satisfies the equation $\mathrm{e}^{-x}=x^{2}$.
So $\mathrm{e}^{-x}=x^{2}$ has one root.
c $\mathrm{f}(x)=\mathrm{e}^{-x}-x^{2}$
$\mathrm{f}(0.70)=\mathrm{e}^{-0.70}-0.70^{2}=0.0065 \ldots$
$\mathrm{f}(0.71)=\mathrm{e}^{-0.71}-0.71^{2}=0.0124 \ldots$
There is a change of sign between 0.70 and 0.71 so there is at least one root in the interval $0.70<x<0.71$.

9 a

b The curves meet at two points, so there are two values of x that satisfy the equation $\ln x=\mathrm{e}^{x}-4$. So $\ln x=\mathrm{e}^{x}-4$ has two roots.

9 c $\mathrm{f}(x)=\ln x-\mathrm{e}^{x}+4$
$\mathrm{f}(1.4)=\ln 1.4-\mathrm{e}^{1.4}+4=0.281 \ldots$
$\mathrm{f}(1.5)=\ln 1.5-\mathrm{e}^{1.5}+4=-0.0762 \ldots$
There is a change of sign between 1.4 and 1.5 so there is at least one root in the interval $1.4<x<1.5$.

10a $\mathrm{h}(x)=\sin 2 x+\mathrm{e}^{4 x}$
$\mathrm{h}^{\prime}(x)=2 \cos 2 x+4 \mathrm{e}^{4 x}$

$$
\begin{aligned}
\mathrm{h}^{\prime}(-0.9) & =2 \cos (-1.8)+4 \mathrm{e}^{-3.6} \\
& =-0.345 \ldots<0 \\
\mathrm{~h}^{\prime}(-0.8) & =2 \cos (-1.6)+4 \mathrm{e}^{-3.2} \\
& =0.104 \ldots>0
\end{aligned}
$$

The change in sign of $\mathrm{h}^{\prime}(x)$ implies that the gradient changes from decreasing to increasing, so there is a turning point in the interval $-0.9<x<-0.8$.
b Choose interval $[-0.8225,-0.8235]$ to test for root.

$$
\begin{aligned}
\mathrm{h}^{\prime}(-0.8235) & =2 \cos (-1.647)+4 \mathrm{e}^{-3.294} \\
& =-0.00383 \ldots<0 \\
\mathrm{~h}^{\prime}(-0.8225) & =2 \cos (-1.645)+4 \mathrm{e}^{-3.29} \\
& =0.000744 \ldots>0
\end{aligned}
$$

There is a change of sign between
-0.8225 and -0.8235 , so
$-0.8225<\alpha<-0.8235$, which gives $\alpha=-0.823$ correct to 3 d.p.

11 a

b The curves meet at one point, so there is one value of x that satisfies the equation $\sqrt{x}=\frac{2}{x}$. So $\sqrt{x}=\frac{2}{x}$ has one root.
c $\mathrm{f}(x)=\sqrt{x}-\frac{2}{x}$
$f(1)=\sqrt{1}-\frac{2}{1}=-1$
$\mathrm{f}(2)=\sqrt{2}-\frac{2}{2}=0.414 \ldots$
There is a change of sign, so there is a root, r, between $x=1$ and $x=2$.
d $\sqrt{x}=\frac{2}{x}$

$$
x^{\frac{1}{2}}=\frac{2}{x}
$$

$$
x^{\frac{1}{2}} \times x=2
$$

$$
x^{\frac{1}{2}+1}=2
$$

$$
x^{\frac{3}{2}}=2
$$

$$
\left(x^{\frac{3}{2}}\right)^{2}=2^{2}
$$

$$
x^{3}=4
$$

So $p=3$ and $q=4$.
e $x^{\frac{3}{2}}=2$
$\Rightarrow x=2^{\frac{2}{3}}\left[=\left(2^{2}\right)^{\frac{1}{3}}=4^{\frac{1}{3}}\right]$
$12 \mathbf{a} \mathrm{f}(x)=x^{4}-21 x-18$
$\mathrm{f}(-0.9)=0.6561+18.9-18=1.5561>0$
$\mathrm{f}(-0.8)=0.4096+16.8-18=-0.7904<0$
The change of sign between -0.9 and -0.8 implies there is at least one root in the interval $[-0.9,-0.8]$.
b $\mathrm{f}^{\prime}(x)=4 x^{3}-21$
$\mathrm{f}^{\prime}(x)=0 \Rightarrow 4 x^{3}=21$
$x=\sqrt[3]{\frac{21}{4}}=1.738 \ldots$
$f(1.738)=1.738^{4}-21 \times 1.738-18$

$$
=-45.373 \ldots
$$

Stationary point is $(1.74,-45.37)$ to 2 d.p.
c $\mathrm{f}(x)=(x-3)\left(x^{3}+a x^{2}+b x+c\right)$
$\mathrm{f}(x)=x^{4}+(a-3) x^{3}+(b-3 a) x^{2}+(c-3 b) x-3 c$
Comparing coefficients...
$a=3, b=9, c=6$

12 d

(1.74, -45.37)

